On a Ditzian-Totik Theorem*

Xie-Hua Sun
Division of Mathematics, China Institute of Metrology, Hangzhou, Zhejiang 310034, People's Republic of China
Communicated by Vilmos Totik

Received April 29, 1992; accepted in revised form December 4, 1992

We give the first example that a classical operator, the Bernstein interpolation process, satisfies the Ditzian-Totik theorem. 1994 Academic Press, Inc.

1. Ditzian and Totik [1] introduced a new modulus

$$
\omega_{\varphi}^{r}(f, t):=\sup _{|h| \leqslant t}\left\{\left\|\Delta_{h \varphi}^{r} f\right\|_{C[-1,1]} ; \varphi(x)=\sqrt{1-x^{2}}\right\}
$$

where

$$
\Delta_{h}^{r} f(x)= \begin{cases}\sum_{k=0}^{r}(-1)^{k}\binom{r}{k} f\left(x+\left(k-\frac{1}{2} r\right) h\right), & \text { if }\left|x \pm \frac{1}{2} r h\right| \leqslant 1 \\ 0, & \text { otherwise }\end{cases}
$$

and proved that for any $f \in C[-1,1]$, there exists a sequence of polynomials of degree n such that

$$
\left\|f(x)-P_{n}(x)\right\|_{C[-1.1]} \leqslant c(r) \omega_{\varphi}^{r}\left(f, n^{-1}\right)
$$

Recently, Ditzian and Jiang [2] further proved that for any $f \in C[-1,1]$ and $0 \leqslant \lambda \leqslant 1$, there exists a sequence of polynomials of degree n satisfying

$$
\begin{equation*}
\left|f(x)-P_{n}(x)\right| \leqslant c(r, \lambda) \omega_{\varphi^{\lambda}}^{r}\left(f, n^{-1} \delta_{n}(x)^{1-\lambda}\right) \tag{1.1}
\end{equation*}
$$

where $\delta_{n}(x)=n^{-1}+\sqrt{1-x^{2}}$ and

$$
\omega_{\varphi^{\lambda}}^{r}(f, t):=\sup _{|h| \leqslant t}\left\{\left\|\Delta_{h \varphi^{1}}^{r} f\right\|_{C[-1,1]} ; \varphi(x)=\sqrt{1-x^{2}}\right\}
$$

2. In this paper we give the first example that a classical operator, the Bernstein interpolation process, satisfied the estimate (1.1). The so-called Bernstein interpolation process is defined by

$$
B_{n}(f, x)=\sum_{k=1}^{n} f\left(x_{k}\right) m_{k}(x)
$$

[^0]where
\[

$$
\begin{aligned}
& m_{1}(x)=\frac{1}{4}\left(3 l_{1}(x)+l_{2}(x)\right), \quad m_{n}(x)=\frac{1}{4}\left(l_{n-1}(x)+3 l_{n}(x)\right), \\
& m_{k}(x)=\frac{1}{4}\left(l_{k-1}(x)+2 l_{k}(x)+l_{k+1}(x)\right), \quad k=2, \ldots, n-1,
\end{aligned}
$$
\]

and

$$
l_{k}(x)=(-1)^{k+1}\left(1-x_{k}^{2}\right) T_{n}(x) /\left(n\left(x-x_{k}\right)\right), \quad k=1,2, \ldots, n
$$

are the fundamental polynomials of Lagrange interpolation at zeros of Chebyshev polynomial $T_{n}(x)$.
3. Our main result is the following

Theorem. If $f \in C[-1,1]$ and $0 \leqslant \lambda \leqslant 1$, then we have

$$
\left|B_{n}(f, x)-f(x)\right| \leqslant c(\lambda) \omega_{\varphi^{1}}\left(f, n^{-1} \delta_{n}(x)^{1-\lambda}\right)
$$

where the constant $c(\lambda)$ is independent of n, f, and x, but dependent on λ.
4. We need the following

Lemma 1 [3]. The following estimate is valid:

$$
\sum_{k=1}^{n} m_{k}(x)=O(1)
$$

Lemma 2 [3]. The following estimates are valid:

$$
\begin{align*}
m_{1}(x)= & O(1) n^{-4}|\cos n \theta| /\left|\left(\cos \theta-\cos \theta_{1}\right)\left(\cos \theta-\cos \theta_{2}\right)\right| \\
m_{k}(x)= & O(1) n^{-3}|\cos n \theta| / \left\lvert\, \sin \frac{1}{2}\left(\theta-\theta_{k-1}\right) \sin \frac{1}{2}\left(\theta-\theta_{k}\right)\right. \tag{4.1}\\
& \left.\times \sin \frac{1}{2}\left(\theta-\theta_{k+1}\right) \right\rvert\,, \quad k=2, \ldots, n-1, \\
m_{n}(x)= & O(1) n^{-4}|\cos n \theta| /\left|\left(\cos \theta-\cos \theta_{n-1}\right)\left(\cos \theta-\cos \theta_{n}\right)\right|,
\end{align*}
$$

where $x=\cos \theta(0 \leqslant \theta \leqslant \pi), x_{k}=\cos \theta_{k}=\cos (2 k-1) \pi /(2 n)$.

Lemma 3. For $0 \leqslant \lambda \leqslant 1$, the following estimate is valid

$$
\begin{equation*}
\sum_{k=1}^{n}\left|n \sin \frac{1}{2}\left(\theta-\theta_{k}\right)\right|^{1-\lambda}\left|m_{k}(x)\right|=O(1) . \tag{4.2}
\end{equation*}
$$

Proof. Equation (4.2) follows from Lemma 1, Lemma 2, and the estimate

$$
\left|\sin \frac{1}{2}\left(\theta-\theta_{k}\right)\right| \sim\left|\theta-\theta_{k}\right| \sim\left|\theta_{j}-\theta_{k}\right| \sim|j-k| / n, \quad k \neq j
$$

where $\left|\theta_{j}-\theta\right|:=\min _{1 \leqslant k \leqslant n}\left|\theta_{k}-\theta\right|$.
Lemma 4. For any polynomial $p_{n-1}(x)$ of degree $\leqslant n-1$,

$$
\begin{align*}
B_{n}\left(p_{n-1}, x\right)= & \frac{1}{4}\left[p_{n-1}\left(\cos \left(\theta+\frac{\pi}{n}\right)\right)+2 p_{n-1}(\cos \theta)\right. \\
& \left.+p_{n-1}\left(\cos \left(\theta-\frac{\pi}{n}\right)\right)\right] \tag{4.3}
\end{align*}
$$

holds.
Proof. Equation (4.3) follows from the invariability of the Lagrange interpolation for polynomials of degree $\leqslant n-1$.
5. Proof of Theorem. Let $P_{n-1}(x)$ be the polynomial of degree $\leqslant n-1$ satisfying (1.1). Since $B_{n}(1, x) \equiv 1$, we have

$$
\begin{equation*}
B_{n}(f, x)-f(x)=B_{n}\left(f-P_{n-1}, x\right)+\left[B_{n}\left(P_{n-1}, x\right)-f(x)\right]:=I_{1}+I_{2} \tag{5.1}
\end{equation*}
$$

Using (1.1), (4.1), (4.2), and the property of the modulus

$$
\omega_{\varphi^{\lambda}}(f, \mu t) \leqslant c(1+\mu) \omega_{\varphi^{\lambda}}(f, t), \quad \mu>0
$$

and observing that

$$
\frac{\delta\left(x_{k}\right)}{\delta(x)}=\frac{n^{-1}+\sin \theta+\left|\sin \left(\theta-\theta_{k}\right)\right|}{n^{-1}+\sin \theta} \leqslant 2\left(1+\left|n \sin \frac{1}{2}\left(\theta-\theta_{k}\right)\right|\right)
$$

we obtain

$$
\begin{align*}
\left|I_{1}\right| & \leqslant c(\lambda) \sum_{k=1}^{n} \omega_{\varphi^{\lambda}}\left(f, n^{-1}\left(\delta_{n}\left(x_{k}\right)\right)^{1-\lambda}\right)\left|m_{k}(x)\right| \\
& \left.\leqslant c(\lambda) \omega_{\varphi^{\lambda}}\left(f,\left(\delta_{n}(x)\right)^{1-\lambda}\right) \sum_{k=1}^{n}\left(1+\delta_{n}\left(x_{k}\right) / \delta_{n}(x)\right)^{1-\lambda}\right)\left|m_{k}(x)\right| \\
& \leqslant c(\lambda) \omega_{\varphi^{2}}\left(f,\left(\delta_{n}(x)\right)^{1-\lambda}\right) \sum_{k=1}^{n}\left(1+\left(n\left|\sin \frac{1}{2}\left(\theta-\theta_{k}\right)\right|^{1-\lambda}\right)\left|m_{k}(x)\right|\right. \\
& \leqslant c(\lambda) \omega_{\varphi^{\lambda}}\left(f, n^{-1}\left(\left(\delta_{n}(x)\right)^{1-\lambda}\right)\right. \tag{5.2}
\end{align*}
$$

For I_{2}, from (4.3) it follows that

$$
\begin{align*}
I_{2}= & \frac{1}{4}\left[P_{n-1}\left(\cos \left(\theta+\frac{\pi}{n}\right)\right)-f\left(\cos \left(\theta+\frac{\pi}{n}\right)\right)\right] \\
& +\frac{1}{4}\left[P _ { n - 1 } \left(\cos \left(\theta-\frac{\pi}{n}\right)-f\left(\cos \left(\theta-\frac{\pi}{n}\right)\right)\right.\right. \\
& +\frac{1}{2}\left[P_{n-1}(\cos \theta)-f(\cos \theta)\right]+\frac{1}{4}\left[f\left(\cos \left(\theta+\frac{\pi}{n}\right)\right)-f(\cos \theta)\right] \\
& +\frac{1}{4}\left[f\left(\cos \left(\theta-\frac{\pi}{n}\right)\right)-f(\cos \theta)\right]:=I_{21}+I_{22}+I_{23}+I_{24}+I_{25} . \tag{5.3}
\end{align*}
$$

Since

$$
\delta_{n}\left(\cos \left(\theta \pm \frac{\pi}{n}\right)\right)=n^{-1}+\left|\sin \left(\theta \pm \frac{\pi}{n}\right)\right| \leqslant c\left(n^{-1}+\sin \theta\right)=c \delta_{n}(x)
$$

then using (1.1), we obtain

$$
\begin{equation*}
I_{21}+I_{22}+I_{23}=O(1) \omega_{\varphi^{\lambda}}\left(f, n^{-1}\left(\delta_{n}(x)\right)^{1-\lambda}\right) \tag{5.4}
\end{equation*}
$$

Observing that

$$
1-\left[\frac{1}{2}\left(\cos \left(\theta+\frac{\pi}{n}\right)+\cos \theta\right)\right]^{2} \geqslant \sin ^{2}\left(\theta+\frac{\pi}{2 n}\right)
$$

and according to the definition of the modulus, we have

$$
\begin{align*}
& \left|f\left(\cos \left(\theta+\frac{\pi}{n}\right)\right)-f(\cos \theta)\right| \\
& \quad \leqslant \omega_{\varphi^{\lambda}}\left(f, \frac{|\cos (\theta+\pi / n)-\cos \theta|}{\left(1-\left(\frac{1}{2}(\cos (\theta+\pi / n)+\cos \theta)\right)^{2}\right)^{2 / 2}}\right) \\
& \quad \leqslant c \omega_{\varphi^{\lambda}}\left(f, 2\left|\sin \left(\theta+\frac{\pi}{2 n}\right)\right|^{1-\lambda} \sin \frac{\pi}{2 n}\right) \\
& \quad \leqslant c \omega_{\varphi^{\lambda}}\left(f, n^{-1} \delta_{n}(x)\right)^{1-\lambda} . \tag{5.5}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\left|f\left(\cos \left(\theta-\frac{\pi}{n}\right)\right)-f(\cos \theta)\right| \leqslant c \omega_{\varphi^{i}}\left(f, n^{-1}\left(\delta_{n}(x)\right)^{1-i}\right) . \tag{5.6}
\end{equation*}
$$

Combining (5.3)-(5.6) yields

$$
\begin{equation*}
I_{2} \leqslant c \omega_{\varphi^{\lambda}}\left(f, n^{-1}\left(\delta_{n}(x)\right)^{1-\lambda}\right) \tag{5.7}
\end{equation*}
$$

Finally, (3.1) follows from (5.1)-(5.2) and (5.7).
Q.E.D.

References

1. Z. Ditzian and V. Totik, "Moduli of Smoothness," Springer-Verlag, New York/Berlin, 1987.
2. Z. Ditzian and D. Jiang, Approximation of function by polynomials in $C[-1,1]$, J. Canad. Math., to appear.
3. A. K. Varma, A new proof of A. F. Timan's approximation theorem, II, J. Approx. Theory 18 (1976), 57-62.

[^0]: * This work was conducted at the University of Alberta, Edmonton, Canada.

